TECHNICAL SPECIFICATION
FOR A TYPICAL
STEEL DRY CARGO CONTAINER
20'x8'x8'6" TYPE
“SIDE DOOR”
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>General</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Dimensions and Ratings</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Materials</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Construction</td>
<td>7</td>
</tr>
<tr>
<td>5.</td>
<td>Surface preservation</td>
<td>14</td>
</tr>
<tr>
<td>6.</td>
<td>Markings</td>
<td>16</td>
</tr>
<tr>
<td>7.</td>
<td>Testing</td>
<td>17</td>
</tr>
</tbody>
</table>
1. General

1.1 Scope
This specification will cover the design, construction, materials, testing and inspection performances of 20'x8'x8'6" type side open door steel dry cargo containers. These containers specified herein will be manufactured under strict quality control by manufacturer and be approved by the classification society or agency.

1.2 Operational environment
The container will be designed and constructed for carriage of general cargo by marine (on or below deck), road and rail throughout the world. All materials used in the construction will be to withstand extremes of temperature range from -40°C(-40°F) to +70°C(+158°F) without effect on the strength of the basic structure and water tightness.

1.3 Standards and Regulations
The container will satisfy the following requirements and regulations, unless otherwise mentioned in this specification.

1.3.1 ISO Container Standards
ISO 668 - Series 1 freight containers - Classification external dimensions and ratings (4th edition - 1988/Amendment.1 - 1993) (Except length and internal length & internal width)

ISO 1496-1 - Series 1 freight containers - Specification and testing.

ISO 6346 - Freight containers - coding, identification and marking (3rd edition-1995)

.3.2 T.I.R. Certification
All the containers will be certified and complied with "The Customs Convention on the International Transport of Goods under the cover of T.I.R. Carnets." or "The Customs Convention on Containers."

1.3.3 C.S.C. Certification
All the containers will be certified and complied with the requirements of the "International Convention for the Safe Containers."

1.3.4 T.C.T. Certification
All exposed wooden components used for container will be treated to comply with the requirements of "Cargo Containers-Quarantine Aspects and Procedures" of the Commonwealth Department of Health, Australia.

1.3.5 Classification society
All the containers will be certified for design type and individually inspected by classification society, BV, ABS, LR, GL or CCS.

* Note: BV: Bureau Veritas (France)
 ABS: American Bureau of Shipping (USA)
 LR: Lloyd's Register of Shipping (UK)
 GL: Germanischer Lloyd (Germany)
 CCS: China Classification Society (P.R.C)

1.4 Handling
The container will be constructed to be capable of being handled without any permanent deformation under the following conditions:

 a) Lifting, full or empty, at top corner fittings vertically by means of spreaders fitted with hooks, shackles or twistlocks.

 b) Lifting, full or empty, at bottom corner fittings using slings with terminal fittings at any angles between vertical and 45 degrees to the horizontal.
 c) Lifting, full or empty, at forklift pockets using forklift truck.

1.5 Transportation
The container will be constructed to be suitable for transportation in the following modes:

a) Marine: In the ship cell guides of vessels, nine (9) high stacked. On the deck of vessels, four (4) high stacked and secured by vertical and diagonal wire lashings.

b) Road: On flat bed or skeletal chassis, secured by twistlocks or equivalent at the bottom corner fittings.

c) Rail: On flat cars or special container cars secured by twistlocks or equivalent at the bottom corner fittings.

2. Dimensions and Ratings

2.1 External Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Nominal Value</th>
<th>Allowable Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>6,058 + 0mm</td>
<td>19’ 10 1/2” + 0</td>
</tr>
<tr>
<td></td>
<td>- 6mm</td>
<td>- 1/4”</td>
</tr>
<tr>
<td>Width</td>
<td>2,438 + 0mm</td>
<td>8’ + 0</td>
</tr>
<tr>
<td></td>
<td>-5mm</td>
<td>- 3/16”</td>
</tr>
<tr>
<td>Height</td>
<td>2,591 + 0mm</td>
<td>8’ 6” + 0</td>
</tr>
<tr>
<td></td>
<td>-5mm</td>
<td>- 3/16”</td>
</tr>
</tbody>
</table>

1) No part of the container will protrude beyond the external dimensions mentioned above.

2) Maximum allowable differences between two diagonals on anyone of the following surfaces will be as follows:

 Roof, bottom and side diagonals: 13 mm
 Front and rear diagonals: 10 mm

2.2 Internal Dimensions (nominal)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>5,898 mm</td>
</tr>
<tr>
<td>Width</td>
<td>2,287 mm</td>
</tr>
<tr>
<td>Height</td>
<td>2,299 mm</td>
</tr>
</tbody>
</table>

2.3 Door opening Dimensions

<table>
<thead>
<tr>
<th>Door</th>
<th>Width</th>
<th>Nominal Value</th>
<th>Allowable Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear</td>
<td>Width</td>
<td>2,114 + 0mm</td>
<td>-5mm</td>
</tr>
</tbody>
</table>
2.4 Internal cubic capacity (Nominal)

31.0 cu.m 1,095 cu.ft

2.5 Forklift pockets

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Center to center</th>
</tr>
</thead>
<tbody>
<tr>
<td>360 mm</td>
<td>min. 115 mm</td>
<td>2,050 mm +/- 50 mm</td>
</tr>
</tbody>
</table>

1' 2 11/64" 4 1/2" 6' 8 45/64" +/- 2"

2.6 Ratings

Max. Gross Weight(R)	24,000 kgs	52,910 lbs
Tare Weight(design)(T) +/-2%	3,180 kgs	7,010 lbs
Max. Payload(P)	20,820 kgs	45,900 lbs

3. Materials

3.1 General

The following materials will be used in the construction of containers.

3.2 Part specification

<table>
<thead>
<tr>
<th>Parts</th>
<th>Materials by JIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Door panels</td>
<td>Anti-corrosive steel. SPA-H or equivalent</td>
</tr>
<tr>
<td>Roof panels</td>
<td>Y.P.: 343 N/mm²</td>
</tr>
<tr>
<td>Side panels</td>
<td>T.S.: 481 N/mm²</td>
</tr>
<tr>
<td>Front panels</td>
<td></td>
</tr>
</tbody>
</table>
2) Door header (upper & lower) Structural steel. SS41
 Front top end rail Y.P.: 25kg/mm²
 Front bottom end rail T.S.: 41kg/mm²
 Lower plates of forklift pocket
 Door horizontal frames
 Floor center rail
 Door gasket retainers
 Bottom side rails (right)
 Inter top end rail
 Gussets

3) Cross members Rolled high tensile steel. SM50A
 Rear corner posts (outer & inner) Y.P.: 33 kg/mm²
 Front corner posts (outer & inner) T.S.: 50 kg/mm²
 Door sill
 Bottom side rails (left)
 Upper plates of forklift pocket
 Top side rails (right)

4) Top side rails (left) Structural steel rectangular pipe.STKR41
 Door vertical frames Y.P.: 25 kg/mm²
 T.S.: 41 kg/mm²

5) Door locking bars Structural steel round pipe. STK41
 Y.P.: 24 kg/mm²
 T.S.: 41 kg/mm²

6) Corner fittings Casted weldable steel. SCW49
 Y.P.: 28 kg/mm²
 T.S.: 49 kg/mm²

7) Locking gear cams and keepers Forged weldable steel. S20C
 Y.P.: 25 kg/mm²
 T.S.: 41 kg/mm²
8) Door hinges Structural steel S25C
 Y.P.: 27 kg/mm^2
 T.S.: 45 kg/mm^2

9) Door hinge pins Stainless steel.

10) Door gasket EPDM

* Note : Y.P. - Yielding Point
 T.S. - Tensile Strength

4. Construction

4.1 General

4.1.1 The container will be constructed with steel frames, fully vertical-corrugated steel sides and front wall, horizontal-corrugated steel double doors at rear end and four folding door of the right side wall, die-stamped steel roof and corner fittings. Side doors locate at right hand side for entering the container.

4.1.2 All welds of exterior including the base frames will be continuous welding using CO₂ gas.

4.1.3 Interior welds - when needed - will be stitched with a minimum length of 15 mm.

4.1.4 Gaps between adjacent components to be welded will not exceed 3 mm or the thickness of the parts being welded.

4.1.5 Chloroprene sealant is to be applied at periphery of floor surface and inside unwelded seams, butyl sealant is used to caulk at invisible seam of floor joint area and between door gasket and frame.

4.1.6 The internal bend radii of pressed sections of steel will be not less than 1.5 time the thickness of the materials being pressed.
4.1.7 The wooden floor will be fixed to the base frames by zinc plated self-tapping screws.

4.2 Protrusion

4.2.1 The plane formed by the lower faces of the transverse members shall be positioned by 12.5 mm +5/-1.5 mm above the plane formed by the lower faces of the bottom corner fittings.

4.2.2 The top face of top corner fittings are to protrude a minimum of 6 mm above the highest point of the roof.

4.2.3 The outside faces of the corner fittings will protrude from the outside faces of the corner posts by nominal 4 mm.

4.2.4 The outside faces of the corner fittings will protrude from the outside faces of the sides and front wall by nominal 8 mm.

4.2.5 Under maximum payload, no part of the container will protrude below the plane formed by the lower faces of the bottom corner fittings at the time of maximum deflection.

4.2.6 Under 1.8 x maximum gross weight, no part of the container will protrude more than 6.0 mm below the plane formed by the lower faces of the bottom corner fittings at the time of maximum deflection.

4.3 Corner fittings

The corner fittings will be designed in accordance with ISO 1161 (1984 edition) and manufactured at the works approved by classification society.

4.4 Base frame structure

Base frame will be composed of two bottom side rails, 14 cross members, and a set of forklift pockets.

4.4.1 Bottom side rail

The right bottom side rail is built of two 140x28 mm thick flat steel located up and down separately and a 190x16 mm thick flat steel in the middle, welding together to make it in the shape of “I” section.
The left bottom side rail is built of a 50x246x30x4.5 mm thick cold formed “C” section steel made in some pieces by welding. Reinforcement plates to be made of 6.0 and 4.0 mm thick flat steel is welded to bottom corner fitting.

4.4.2 Cross member
The cross members are made of pressed channel section steel with a dimension of 45x122x45x4.0 mm for the normal areas and 75x122x45x4.5 mm for the floor butt joints. The cross members are placed fully to withstand floor strength and welded to each bottom side rail.

4.4.3 Forklift pockets
Each forklift pocket is built of 4.0 mm thick one piece pressed hat section and one 170 mm deep x 6.0 mm thick flat lower end plates (only at left side). The one set of forklift pockets is designed in accordance with ISO requirements.

4.5 Flooring
The floor will consist of six pieces plywood boards, floor center rail, and self-tapping screws.

4.5.1 Floor
The wooden floor to be constructed with 28 mm thick hardwood plywood boards are laid longitudinally on the transverse members between the 4.0 mm thick flat bar steel floor center rail and the 3.0 mm thick pressed angle section steel floor guide rails stitched welded to the bottom side rails. The floor boards are tightly secured to each transverse member by self-tapping screws, and all butt joint areas and peripheries of the floor boards are caulked with sealant.

1) Wood species: Apitong or Keruing.
2) Glue: Phenol-formaldehyde resin.
3) Treatment:
 a) Preservative: Basileum or equivalent.
 In accordance with Australian Health Department Regulations.
 b) Average moisture content will be 14% before installation.
4.5.2 **Self-tapping screw**
Each floor board is fixed to the transverse members by zinc plated self-tapping screws that are 8.0 mm dia. shank x 16 mm dia. head x 45 mm length, and fastened by four screws per cross member but five screws at joint areas.
Screw heads are to be countersunk with about 2 mm below the floor top surface.

4.6 **Rear frame structure**
The rear frame will be composed of one door sill, two corner posts, one door header and four corner fittings, which will be welded together to make the door-way.

4.6.1 **Door sill**
The door sill to be made of a 4.5 mm thick pressed open section steel is reinforced by four internal gussets at the back of each locking cam keeper location.
The upper face of the door sill has a 10 mm slope for better drainage.
There is a gusset at each end of the door sill and reinforced by a 200x80x10 mm thick flat steel as a protection against handling equipment damages.

4.6.2 **Rear corner post**
Each corner post is made of 6.0 mm thick pressed open section steel and a single piece reinforced by 6.0 mm thick steel plate, and designed to give a sufficient strength against stacking and racking forces.
Four (4) sets of hinge pin lugs are welded to each rear corner post.

4.6.3 **Door header**
The door header is constructed with a 4.0mm thick pressed "U" section steel lower part having four internal gussets at the back of each locking cam keeper location and a 3.0mm thick pressed steel upper part, which are formed into box section by continuous welding.

4.7 **Rear Door**
4.7.1 Each container will have double wing doors at rear end frame, and each door will be capable of swinging approximately 180 degrees.
4.7.2 Each door is constructed with two 3.0 mm thick pressed channel section steel horizontal frames for the top and bottom, 100x50x2.3 mm thick rectangular hollow section vertical frames and 2.0 mm thick horizontally corrugated steel door panel, which are continuously welded within frames.

4.7.3 Two sets of galvanized "BE-2566 MN" model locking assemblies with pressed steel handles are fitted to each door using high tensile zinc plated steel bolts and Huck bolts according to TIR requirements. Locking bar retainers are fitted with nylon bushings at the top, bottom and intermediate bracket. Locking gears should be assembled after painting of the container.

4.7.4 The left hand door can not be opened without opening the right hand door when the container is sealed in accordance with TIR requirements.

4.7.5 Each door is suspended by four hinges being provided with stainless steel pins, self-lubricating nylon bushings and brass washers, which are placed at the hinge lugs of the rear corner posts.

4.7.6 The door gasket to be made of an extruded J-type EPDM rubber is installed to the door peripheral frames with galvanized steel gasket retainers which must be caulked with butyl sealant before installation of gasket, and fastened by electro-galvanized self-tapping screws at a pitch of 150 mm.

4.8 Roof structure
The roof will be constructed with five five-corrugated (die-stamped) steel panels and four corner protection plates.

4.8.1 Roof panel
The roof panel is constructed with 2.0 mm thick die-stamped steel sheets having about 6.0 mm upward smooth camber, which are welded together to form one panel and continuously welded to the top side rails and top end rails. All overlapped joints of inside unwelded seams are caulked with sealant.
4.8.2 Protection plate
Each corner of the roof in the vicinity of top corner fitting is reinforced by 3 mm thick rectangular steel plate to prevent the damage caused by the mishandling of lifting equipment.

4.9 Top side rail
Top side rail at left is made of a 60x60x3.0 mm thick rectangular hollow section steel. Top side rail at right is made of a 4.5mm thick “U” section pressed steel and a 4.5mm angle section pressed steel which are continuously welded together.

4.10 Side wall

4.10.1 Left side wall
The trapezium section side wall is constructed with 1.6 mm thick fully vertically continuous-corrugated steel outer panels near the each post and 1.6 mm thick intermediate inner panels, which are butt welded together to form one panel and continuously welded to the side rails and corner posts.

4.10.2 Right side door
Side doors locate at right hand side when entering the container. Each side door will be equipped with two sets of locking gear system (as same end door locking gear). The hinges pins, gaskets and door holder will be installed on each door. By six hinge pins, the outer door will be fitted at the hinge post which is be welded with intermediate post and inner door will be connected with outer door by five hinge pins. Grease nipples for side door hinge. The outer door will be capable of swinging approximately 180 degrees.

4.10.3 Side door
Each door is constructed of door frames and door panel
| Door panel: 1.6 mm thick |
| Door horizontal frame: 3.0 mm thick |
| Door vertical frames: 50x100x3.2 mm thick rectangular hollow section steel and 3.0 mm thick pressed channel section steel. |
Other structures are the same as rear door.
4.11 Front structure
Front end structure will be composed of one bottom end rail, two corner posts, one top end rail, four corner fittings and an end wall, which are welded together.

4.11.1 Bottom end rail
The bottom end rail to be made of a 4.0 mm thick pressed open section steel is reinforced by three internal gussets. There is a gusset at each end of the rail and is reinforced by a 200x80x10 mm flat steel, as the protection against handling damages.

4.11.2 Front corner post
Each corner post is made of 6.0 mm thick pressed open section steel and a single piece reinforced by 4.5 mm thick steel plate, and designed to give a sufficient strength against stacking and racking forces.

4.11.3 Top end rail
The top end rail is made of a 4.0 mm pressed open section steel.

4.11.4 Front wall
The trapezium section front wall is constructed with 2.0 mm thick vertically corrugated steel panels, butt welded together to form one panel, and continuously welded to front end rails and corner posts.

4.12 Special feature

4.12.1 Customs seal provisions
Customs seal and padlock provisions are made on each locking handle retainer to cover the sealed area in accordance with TIR requirements.

4.12.2 Lashing fittings
Seven (7) lashing hoop rings are welded to left top and bottom side rail at recessed corrugations of side panels (total 14 rings). Two (2) lashing rings are welded to top and bottom front rail at recessed corrugation of front panel (total 4 rings).
Each lashing point is designed to provide a "1,500 kgs pull load in any direction" without any permanent deformation of lashing ring and surrounding area.

4.12.3 Tie points
Twenty-four (24) φ 8 mm lashing bars are welded to left side panels at recessed corrugation.
Eight (8) φ 8 mm lashing bars are welded to front panels at recessed corrugation.
Eight (8) φ 8 mm lashing bars are welded to roof panels at recessed corrugation.

4.12.4 Ventilator
Each container will have two labyrinth type small plastic ventilators.
Each ventilator is fixed to the right and left hand upper part of left side wall by three 5.0 mm dia. steel Huck bolts in accordance with TIR requirements after drying of top coating, and caulked with sealant around the entire periphery except underside to prevent the leakage of water.

5. Surface preservation

5.1 Surface preparation
1) All steel surfaces - prior to forming or after - will be fully abrasive shot blasted conforming to Swedish Standard SA 2 1/2 with near white metal surfaces and RUGOTEST #3 BN9a to BN10 to remove all rust, dirt, mill scale and all other foreign materials.

2) All door hardwares will be hot-dipping zinc galvanized with approximately 75 microns thickness and gasket retainers will be hot-dipping zinc galvanized with approximately 30 microns thickness.

3) All fasteners such as self-tapping screws and bolts, nuts, hinges, cam keepers and lashing fittings will be electro-galvanized with approximately 13 microns thickness.

5.2 Coating

5.2.1 Prior to assembly
All steel surfaces will be coated with 10 microns thick two-pack polyamide cured zinc rich epoxy primer immediately after shot blasting, and then dried up in drying room.
5.2.2 After assembly

All weldments will be shot blasted to remove all welding fluxes, splatters, burnt primer coatings caused by welding heat, and other foreign materials. Then all blasted weldments will be coated with 10 microns zinc rich epoxy primer.

5.2.3 The total dry film will be (microns):

All surface of the assembled container will be have coating system as follows:

<table>
<thead>
<tr>
<th>Where</th>
<th>Paint name</th>
<th>DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior surface</td>
<td>Epoxy zinc rich primer</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Epoxy primer</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Acrylic top coating</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>120</td>
</tr>
<tr>
<td>Interior surface</td>
<td>Epoxy zinc rich primer</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Epoxy high build coating</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>70</td>
</tr>
<tr>
<td>Under structure</td>
<td>Epoxy zinc rich primer</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Bitumen</td>
<td>200 (for wooden: 120)</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>220</td>
</tr>
</tbody>
</table>

* Epoxy zinc rich primer and epoxy high build coating are not applied to the wooden.
* Paint supplier: confirmed by customer

6. Marking

6.1 Arrangements

The containers will be marked in accordance with ISO, TCT, CSC and TIR requirements, owner's marking specifications and other required regulations.
6.2 Materials

1) Decal: - Self-adhesive, high tensile PVC film for seven (7) years guarantee without peeling off, tenting or color fading.

2) Certification plate: Stainless steel plates to be chemically etched by acid.

6.3 Specifications

1) Identification plates such as consolidated data plate consisting of CSC, TIR and TCT will be riveted on the door permanently by stainless steel rivets. The entire periphery except underside will be caulked with sealant.

2) The owner's serial numbers and manufacturer's serial numbers will be stamped into the top rear bottom L/H and R/H corner fitting respectively.

7 Testing

7.1 Prototype testing

The prototype container manufactured in accordance with this specification will be tested by manufacturer under the supervision of classification society.

<table>
<thead>
<tr>
<th>Test items & loads</th>
<th>Test methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Stacking</td>
<td>Hydraulic cylinder load will reapplied to each corner post through top corner fittings. Internal load: 1.8R-T</td>
</tr>
<tr>
<td>1) Test load: 86,400kg/post.</td>
<td>Offset: 25.4 mm lateral 38.0 mm longitudinal</td>
</tr>
<tr>
<td></td>
<td>Time duration: 5 minutes</td>
</tr>
<tr>
<td>B) Lifting (from top corner fitting)</td>
<td>Lifting vertically. Internal load: 2R-T</td>
</tr>
<tr>
<td></td>
<td>Time duration: 5 minutes</td>
</tr>
<tr>
<td>C) Lifting (from bottom corner fitting)</td>
<td>Lifting 45 deg. to the horizontal. Internal load: 2R-T</td>
</tr>
<tr>
<td></td>
<td>Time duration: 5 minutes</td>
</tr>
<tr>
<td>D) Lifting (for forklift pockets)</td>
<td>Lifting by horizontal bars.</td>
</tr>
</tbody>
</table>
Internal load: 1.6R-T
Bar length: 1,828 mm
Bar width: 200 mm
Time duration: 5 minutes

E) Restraint (longitudinal)
Internal load: R-T
Test load: 2R
Time duration: 5 minutes

E) Restraint (longitudinal)
Hydraulic cylinder load will be applied to the bottom side rails.
Two times for pulling and pushing

F) Floor strength.
Test load: 7,260 kgs
(16,000 lbs)
Total contact area: 284 cm²
Wheel width: 180 mm
Wheel center: 760 mm

G) Wall strength (front)
Test load: 0.4(R-T)=0.4P
Time duration: 5 minutes

G) Wall strength (front)
Compressed air bag will be used.

H) Wall strength (side)
Test load: 0.4(R-T)=0.4P
Time duration: 5 minutes

H) Wall strength (side)
Compressed air bag will be used on one side only.

I) Wall strength (door)
Test load: 0.4(R-T)=0.4P

I) Wall strength (door)
Same as front wall strength test.

J) Roof strength (weakest part)
Test load: 300 kgs
Applied area will be 600x300 mm longitudinal and transverse.

J) Roof strength (weakest part)
Time duration: 5 minutes

K) Racking (transverse)
Test load: 15,240 kgs
Hydraulic cylinder load will be applied to the header rail through top corner fittings.
Two times for pulling and pushing.

K) Racking (transverse)
Time duration: 5 minutes
L) Racking (longitudinal)
Hydraulic cylinder load will be applied to
the top side rail through top corner fitting on one
side only.
Two times for pulling and pushing.
Time duration: 5 minutes

M) Operation of door
After completion of test, the operation of
doors, locks, hinges, etc. will be checked.

N) Dimensions and weight
After completion of test, the dimensions
and weight will be checked.

O) Weatherproofness
Inside dia. of nozzle: 12.5mm
Distance: 1.5 m
Speed: 100 mm/sec
Pressure: 1 kg/cm²

* Note:
R - Maximum Gross Weight
T - Tare Weight
P - Maximum Payload